Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276.
نویسندگان
چکیده
Rhodococcus corallinus (formerly Nocardia corallina) B-276, isolated with propene as sole carbon and energy source, is able to oxidize trichloroethene (TCE). Glucose- or propene-grown R. corallinus B-276 cells exhibited no difference in TCE degradation efficiency. TCE degradation was found to be growth-phase-dependent and maximum rates were monitored with stationary-phase cells. K(m) and Vmax values for TCE degradation of R. corallinus B-276 grown in nutrient broth medium in the presence of glucose were 187 microM and 2.4 nmol min-1 (mg protein)-1, respectively. Escherichia coli recombinants harbouring and expressing the alkene monooxygenase genes of R. corallinus B-276 exhibited the ability to degrade TCE. This result provides clear evidence that the alkene monooxygenase of R. corallinus B-276 catalyses TCE oxidation. R. corallinus B-276 was shown to contain four linear plasmids, pNC10 (70 kb), pNC20 (85 kb), pNC30 (185 kb) and pNC40 (235 kb). The observation that pNC30-deficient strains had lost the ability to grow on propene suggested that the genes of the propene degradation pathway are encoded by the linear plasmid pNC30. Southern blot analysis with cloned alkene monooxygenase genes from R. corallinus B-276 revealed a positive hybridization signal with the linear plasmid pNC30. This result clearly shows that the alkene monooxygenase is encoded by the linear plasmid pNC30. Eleven short-chain-alkene-oxidizing strains were screened for the presence of linear plasmids. Among these, four propene-oxidizing Rhodococcus strains and one ethene-oxidizing Mycobacterium strain were found to contain linear megaplasmids. Southern blot analysis with the alkene monooxygenase revealed positive signals with linear plasmids of two propene-oxidizing Rhodococcus ruber strains. These results indicate that homologous alkene monooxygenases are encoded by linear plasmids in R. ruber strains.
منابع مشابه
Nitrile Hydratase Activity of Nocardia corallina B-276
Nitrile is a functional group that usually is transformed to amides or carboxylic acids under strong reaction conditions in acidic or basic media and high temperatures. Amides have also been prepared from nitriles at room temperature using strong oxidizing agents such as hydrogen peroxide or sodium superoxide in DMSO. On the other hand biocatalytic hydrolysis of nitriles mediated by nitrilase, ...
متن کاملElectron transfer reactions in the alkene mono-oxygenase complex from Nocardia corallina B-276.
Nocardia corallina B-276 possesses a multi-component enzyme, alkene mono-oxygenase (AMO), that catalyses the stereoselective epoxygenation of alkenes. The reductase component of this system has been shown by EPR and fluorescence spectroscopy to contain two prosthetic groups, an FAD centre and a [2Fe-2S] cluster. The role of these centres in the epoxygenation reaction was determined by midpoint ...
متن کاملProtocol for mutagenesis of alkene monooxygenase and screening for modified enantiocomposition of the epoxypropane product.
Alkene monooxygenase (AMO) from Rhodococcus rhodochrous B-276 is a 3-component enzyme system encoded by the 4-gene operon amoABCD, which catalyzes the stereoselective epoxidation of aliphatic alkenes yielding primarily the R enantiomer. With propene as the substrate, wild-type AMO yields R-epoxypropane with an enantiomeric excess (e.e.) of 83%. The presumed site of alkene oxidation is a dinucle...
متن کاملStudies on the nutrition of Nocardia corallina.
The nutritional requirements of Streptothrix corallinus (Nocardia corallina, Breed et al., 1948) were studied by Reader (1928) who showed that growth in a medium containing glucose, ammonium sulfate and inorganic salts was stimulated by the addition of small amounts of tryptic meat broth or yeast extracts. The active principle in these additions was thought to be related to, but not identical w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 145 ( Pt 7) شماره
صفحات -
تاریخ انتشار 1999